Hal	l Tic	ket N	lumb	er:				
								Code No.: 17551 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD Accredited by NAAC with A++ Grade

B.E. (Mech. Engg.) VII-Semester Main & Backlog Examinations, Dec.-23/Jan.-24 Finite Element Analysis

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	CO	PO
1.	What is the role of stiffness matrix and shape function in the finite element method?	2	1	1	1
2.	Mention the various locations at which nodes has to be positioned during discretization.	2	1	1	1
3.	For the beam as shown in the figure below, considering the minimum number of elements for discretization, compute the global nodal load vector	2	3	2	2
	q_o P				
	$\frac{L}{3} \rightarrow \left \frac{L}{3} \rightarrow \left \frac{L}{3} \rightarrow \right $	- 11			
4.	Sketch the shape functions for the beam element (Hermite shape functions).	2	1	2	1
5.	Write the material matrix for plane stress condition in the finite element method.	2	1	3	1
6.	Sketch a 6-noded linear triangular element	2.	1	3	1
7.	State the convergence requirements of displacements functions.	2	1	4	1
8.	Calculate the Integral $I = \int_{-1}^{1} \left[x^2 + \sin\left(\frac{\pi x}{2}\right) \right] dx$. using 2-point	2	3	4	2
	Gaussian Quadrature Method. Given the gauss points are $\pm (\frac{1}{\sqrt{3}})$ and their weights are 1, 1.				
9.	What is a coefficient matrix and characteristic polynomial in vibration analysis using FEM approach?	2	1	5	1
10.	Write the lumped and consistent matrices for a beam element.	2	1	5	1
	Part-B (5 \times 8 = 40 Marks)				
11. a)	Discuss in brief the concept of Minimum Potential Energy as applied to finite element method.	3	2	1	1

- b) Calculate the nodal displacements in the stepped bar, when an axial load (P) = 200 kN acts on it as shown in the figure below
- 5 3 1 2

Aluminum

$$E_1 = 70 \times 10^9 \text{ N/m}^2$$

 $A_1 = 900 \text{ mm}^2$

Steel

$$E_2 = 200 \times 10^9 \,\text{N/m}^2$$

$$A_2 = 1200 \text{ mm}^2$$

Where A, E denotes the Area of cross section and Young's modulus respectively.

- 12. a) Derive the stiffness matrix for a truss element in global co-ordinate system.
- 3 2 2
- For the two-bar truss subjected to a load of (P)= 20 kN as shown in the figure below, compute the
- ne 5 3 2 2

- a) Element stiffness matrix for each element
- b) Global stiffness matrix

Both the bars are having same Young's Modulus (E) = 200GPa and same cross sectional area (A) = 300mm²

13. a)	Derive the shape functions for a 3-noded linear triangular element.	4	2	3	1
b)	Calculate the shape functions N1, N2 and N3 at the interior point P for the	4	3	3	2
	triangular element as shown in the figure below.				
		•			
	Y				
	3 (4,7)	-21			
	a samula manda i surfredenti di fice e med				
	P (3.5,5)				
	1 (2,3) 2 (7,4)				
14. a)	Derive the thermal stiffness matrix due to heat transfer by conduction alone	4	2	4	1
	in the case of 1-dimensional linear element				
b)	Explain in detail the sequence of steps for a structural problem solving	4	3	4	2
0)	through FE software.				
15 -	Deien the anniatent mass matrix for a 1 dimensional linear Bar element	3	3	5	2
15. a)	Derive the consistent mass matrix for a 1-dimensional linear Bar element.		5		
b)	Compute the natural frequencies of longitudinal vibration of the steel stepped bar as shown in the figure below.	5	3	5	2
	Consider young's modulus (E) = $2x10^5$ N/mm ² , density (ρ) = 7830 Kg/m ³ .				
	A= 16mm ²				
	1 /				
	3				
	12 mm 10 mm				
	Where A denotes the Area of cross section.				
16. a)		4	2	1	1
	two engineering applications of the Finite Element Method.				

b)	Explain the FEM procedure adopted for analyzing any beam subjected to static load.	4	2	2	1
	Consider at least 2-elements, point load and distributed load in the finite element model, clearly indicating the stiffness matrices, force vector and the boundary conditions.	164			
17.	Answer any two of the following:				
a)	Discuss about plane stress and plane strain conditions with suitable example for each condition.	4	2	3	1
b)	Explain the various stages in any finite element analysis software and the type of elements used for analyzing 1-dimensional,	4	2	4	1
	2-dimensional and 3-dimensional structural problems.				
c)	Discuss the importance of Eigen Values and Eigen Vectors of any structure	4	2	5	1

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
